Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(25): eadg3347, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37343090

RESUMO

Many mechanobiological processes that govern development and tissue homeostasis are regulated on the level of individual molecular linkages, and a number of proteins experiencing piconewton-scale forces in cells have been identified. However, under which conditions these force-bearing linkages become critical for a given mechanobiological process is often still unclear. Here, we established an approach to revealing the mechanical function of intracellular molecules using molecular optomechanics. When applied to the integrin activator talin, the technique provides direct evidence that its role as a mechanical linker is indispensable for the maintenance of cell-matrix adhesions and overall cell integrity. Applying the technique to desmoplakin shows that mechanical engagement of desmosomes to intermediate filaments is expendable under homeostatic conditions yet strictly required for preserving cell-cell adhesion under stress. These results reveal a central role of talin and desmoplakin as mechanical linkers in cell adhesion structures and demonstrate that molecular optomechanics is a powerful tool to investigate the molecular details of mechanobiological processes.


Assuntos
Integrinas , Talina , Talina/metabolismo , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Adesão Celular/fisiologia , Integrinas/metabolismo , Filamentos Intermediários
2.
Methods Mol Biol ; 2600: 221-237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587101

RESUMO

Genetically encoded Förster Resonance Energy Transfer (FRET)-based tension sensors were developed to enable the quantification of piconewton (pN)-scale forces that act across distinct proteins in living cells and organisms. An important extension of this technology is the multiplexing of tension sensors to monitor several independent FRET probes in parallel. Here we describe how pulsed interleaved excitation (PIE)-fluorescence lifetime imaging microscopy (FLIM) can be implemented to enable the analysis of two co-expressed tension sensor constructs. Our protocol covers all essential steps from biosensor expression and live cell PIE image acquisition to lifetime calculations.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas , Microscopia de Fluorescência/métodos
3.
Nat Commun ; 11(1): 6403, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335089

RESUMO

Vinculin is a ubiquitously expressed protein, crucial for the regulation of force transduction in cells. Muscle cells express a vinculin splice-isoform called metavinculin, which has been associated with cardiomyopathies. However, the molecular function of metavinculin has remained unclear and its role for heart muscle disorders undefined. Here, we have employed a set of piconewton-sensitive tension sensors to probe metavinculin mechanics in cells. Our experiments reveal that metavinculin bears higher molecular forces but is less frequently engaged as compared to vinculin, leading to altered force propagation in cell adhesions. In addition, we have generated knockout mice to investigate the consequences of metavinculin loss in vivo. Unexpectedly, these animals display an unaltered tissue response in a cardiac hypertrophy model. Together, the data reveal that the transduction of cell adhesion forces is modulated by expression of metavinculin, yet its role for heart muscle function seems more subtle than previously thought.


Assuntos
Adesão Celular/fisiologia , Miocárdio/citologia , Vinculina/metabolismo , Animais , Fibroblastos , Recuperação de Fluorescência Após Fotodegradação , Adesões Focais/fisiologia , Expressão Gênica , Células HEK293 , Humanos , Integrinas/metabolismo , Junções Intercelulares/fisiologia , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Talina/metabolismo , Vinculina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...